∫-π3π3xsinxcos2xdx=
134π+1
4π3-2logtan5π12
4π3+logtan5π12
None of these
Explanation for the correct option:
Finding the value of the given integral:
Let I=∫-π3π3xsinxcos2xdx
=∫-π3π3x.sinxcosx.1cosxdx=∫-π3π3x.secx.tanxdx=2∫0π3x.secx.tanxdxsince∫-π3π3xsinxcos2xdxisanevenfunction
By applying UV formula of integration, we get
=2xsecx0π3-∫0π31.secxdx=2π3secπ3-logtanπ4+x20π3=22π3-logtanπ4+π6=4π3-2logtan5π12
Thus, option (B) is the correct answer.