∫1sin(x-a)sin(x-b)dx=
1sin(b-a)logsin(x+b)sin(x+a)+C
1sin(b+a)logsin(x-b)sin(x-a)-C
1sin(b-a)logsin(x-a)sin(x-b)+C
None of these
Explanation for the correct answer:
Finding the value of the given integral:
Given that,
∫1sin(x-a)sin(x-b)dx
Multiply and divide by sin(a-b)
=1sin(a-b)∫sin(a-b)sin(x-a)sin(x-b)dx
Adding and subtracting x in the numerator
=1sin(a-b)∫sin(x-x+a-b)sin(x-a)sin(x-b)dx
=1sin(a-b)∫sin((x-b)-(x-a))sin(x-a)sin(x-b)dx=1sin(a-b)∫sin(x-b)cos(x-a)-cos(x-b)sin(x-a)sin(x-a)sin(x-b)dx
Since Sin(A-B)=sinAcosB-CosAsinB
=1sin(a-b)∫cos(x-a)sin(x-a)-cos(x-b)sin(x-b)dx=1sin(a-b)∫cos(x-a)sin(x-a)dx-∫cos(x-b)sin(x-b)dx
Substituting,
t1=sin(x-a)dt1=cos(x-a)dxt2=sin(x-b)dt2=cos(x-b)dx
=1sin(a-b)∫dt1t1-∫dt2t2dx∵∫1xdx=logx+c=1sin(a-b)logt1-logt2+C=1sin(a-b)logt1t2+C∵loga-logb=logab=1sin(b-a)logsin(x-a)sin(x-b)+C
Hence, option (C) is the correct answer.
Evaluate :cos48°-sin42°