∫4x+1-7x-128x=
17loge44-x-4loge77-x+C
17loge44-x+4loge77-x+C
1loge7-7-xloge4+C
4-xloge4-7-xloge7+C
128loge4-x+17loge7-x+C
Explanation for the Correct answer:
Finding the value for the given integral:
∫4x+1-7x-128x=∫4x+128x-7x-128xdx=∫4x.44×7x-7x-14×7xdx=∫4x.44x×7x-7x.7-14x×7xdx=∫47xdx-∫7-14xdx=4∫7-xdx-17∫4-xdx=4-7-xloge7-17-4-xloge4+c∵ddxax=axlogea=174-xloge4-47-xloge7+C∵-logea=1logea
Hence, option (A) is the correct answer.
Simplify : 37x−[5x+{28x−(19x−7x)}]