∫(x3+3x2+3x+1)(x+1)5dx=?
-1(x+1)+c
15log(x+1)+c
log(x+1)+c
tan-1x+c
Explanation For The Correct Option:
Evaluating the integral:
∫(x3+3x2+3x+1)(x+1)5dx
=∫(x3+1+3x(x+1))(x+1)5dx=∫(x+1)3(x+1)5dx∵a+b3=a3+b3+3ab(a+b)=∫1(x+1)2dx
Substituting t=x+1then dx=dt
⇒∫1t2dt=∫t-2dt=-1t+c[c=constant]=-1(x+1)+csubstitutingbackt=(x+1)
Hence, option (A) is the correct answer.