wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate:π40log(1+tanx)dx

Open in App
Solution

π40log(1+tanx)dx

Since a0f(x)dx=a0f(ax)dx

=π40log(1+tan(π4x))dx

=π40log⎜ ⎜1+tanπ4tanx1+tanπ4tanx⎟ ⎟dx

=π40log(1+1tanx1+tanx)dx

=π40log(1+tanx+1tanx1+tanx)dx

=π40log(21+tanx)dx

=π40log2dxπ40log(1+tanx)dx

I=log2[x]π40I since I=π40log(1+tanx)dx

2I=log2×[π40]

I=πlog28

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon