wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate x2+x+2(x1)(x2)dx, with respect to x.

Open in App
Solution

I=x2+x+2(x1)(x2)dx
I=x23x+2+4xx23x+2dx=14xx23x+2dx
I=1.dx+4xx23x+2dx
I=I1+I2(1)
I1=1.dx=x(2)
I2=4xx2+3x+2dx=4x(x1)(x2)dx
using partial fraction we get
x(x1)(x1)=Ax1+Bx2
x=A(x2)+B(x1)=x(A+B)2AB
on comparing.
A+B = 1
& -2A-B=0 (B = -2A)
A=1 [A=1] &[B=2]
then
I2=41x1+2x2dx=4[log(x1)+2log(x2)]
I2=4[log1(x1)+log(x2)2]=4log(x2)2(x1)(3)
Then using eq (1),(2) & (3) we have
I=x+4log(x2)2(x1)+C

1208174_1361388_ans_ff0dd596fe9c4e1f95e09dadb5ae9e4e.JPG

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon