Consider the given integral.
I=∫(x+1)√3−2x−x2dx
Let t=3−2x−x2
dtdx=0−2−2x
−dt2=(x+1)dx
Therefore,
I=−12∫√tdt
I=−12⎛⎝t3/232⎞⎠+C
I=−t3/23+C
On putting the value of t, we have
I=−(3−2x−x2)3/23+C
Hence, this is the answer.
Integrate the following functions. ∫2x1+x2dx.
Integrate the function. ∫ex(1x−1x2)dx.