∫1/5+3cosx.dx uset=tanx/2 thus, cosx=1−t2/1+t2 and cos(2)x/2=1/(1+t)2 dt/dx=1/2.sec(2).x/2 dt/dx=([1+t2]/2) By substitution, we eliminate cosx etc and get ... int 1/5+3cosx.dx=int2/(8−2t2).dt =int1/(4−t2).dt =1/4.ln([2+t]/[2−t])+C
Integrate dx/sinx+√3cosx