∫(x−3)ex(x−1)3dx (By ILATE)
let x−1=m or m+1=x
dx=dm
⇒∫(m−2)em+1m3dm
Here (1) u=(m−2)em+1,V=1m3
(∵∫uvdx=u∫vdx−∫[dvdx∫vdx])
⇒−em+1(m−2)2m2−∫−em+1+em+1m2m2dm
−12∫−em+1+em+1mm2dm
Here (2)m=em+1+em+1m,v=1m2
⇒−12[−(−em+1+em+1mm)−em+1dn]
(−em+1)
⇒−12(−em+1+em+1mm−(−e1+m))
−em+12m
⇒−em+1(m−2)2m2+em+12m+c
or
⇒ex(x−3)2(x−1)2+ex2(x−1)+c