∫xcos−1xdx
Let x=cosθ⇒dx=−sinθdθ
∫xcos−1xdx
=∫cosθcos−1(cosθ)(−sinθ)dθ
=−∫sinθ(θ)cosθdθ
=−12∫θ(2sinθcosθ)dθ
=−12∫θsin2θdθ
Integrating by parts,
∫u.dv=uv−∫v.du
Put u=θ⇒du=dθ
dv=sin2θ⇒v=−cos2θ2+c
=−12[θ∫sin2θdθ−∫(dθdθ∫sin2θdθ)dθ]
=−12[θ−cos2θ2−∫1.−cos2θ2dθ]
=−12[−θ2cos2θ+12∫cos2θdθ]
=−12[−θ2cos2θ+12sin2θ2]+c
=θ4cos2θ−18sin2θ+c
=θ4(2cos2θ−1)−18×2sinθcosθ+c
=θ4(2cos2θ−1)−14×sinθcosθ+c
=θ4(2cos2θ−1)−14cosθ√1−cos2θ+c
Using x=cosθ⇒θ=cos−1x
=cos−1x4(2x2−1)−x4√1−x2+c
=(2x2−1)4cos−1x−x4√1−x2+c