wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integratexcos1xdx

Open in App
Solution

xcos1xdx
Let x=cosθdx=sinθdθ
xcos1xdx
=cosθcos1(cosθ)(sinθ)dθ
=sinθ(θ)cosθdθ
=12θ(2sinθcosθ)dθ
=12θsin2θdθ
Integrating by parts,
u.dv=uvv.du
Put u=θdu=dθ
dv=sin2θv=cos2θ2+c
=12[θsin2θdθ(dθdθsin2θdθ)dθ]
=12[θcos2θ21.cos2θ2dθ]
=12[θ2cos2θ+12cos2θdθ]
=12[θ2cos2θ+12sin2θ2]+c
=θ4cos2θ18sin2θ+c
=θ4(2cos2θ1)18×2sinθcosθ+c
=θ4(2cos2θ1)14×sinθcosθ+c
=θ4(2cos2θ1)14cosθ1cos2θ+c
Using x=cosθθ=cos1x
=cos1x4(2x21)x41x2+c
=(2x21)4cos1xx41x2+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon