Integrate the following functions.
∫1√7−6x−x2dx.
Let I=∫1√7−6x−x2dx=∫1√7−(x2+6x)dx
=∫1√7−[x2+2×3x+(3)2−(3)2]dx=∫1√7−[x2+6x+32−9]dx=∫1√7−[(x+3)2−9]dx=∫1√42−(x+3)2dx
Let x+3=t⇒dx=dt
∴I=∫1√42−t2dt=sin−1(t4)+C[∵∫dx√a2−x2=1asin−1(xa)]=sin−1(x+34)+C(∵t=x+3)