wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate the following functions.
5x21+2x+3x2dx.

Open in App
Solution

5x21+2x+3x2dx
Let 5x2=Addx(1+2x+3x2)+B
5x2=A(2+6x)+B5x2=6Ax+(2A+B)
On equating the coefficient of x and constant on both sides, we get
5=6AA=56 and 2A+B=2B=1135x2=56(2+6x)+(113)I=5x21+2x+3x2dx=56(2+6x)1131+2x+3x2dx
Let I1=2+6x1+2x+3x2dx and I_2 =11+2x+3x2dx
I=56I1113I2

Now, I1=2+6x1+2x+3x2dx
Let 1+2x+3x2=t
(2+6x)dx=dtI1=dtt=log|t|+C1I1=log|1+2x+3x2|+C1.......(ii)
Also, I2=11+2x+3x2dx

1+2x+3x2can be written as 1+3(x2+23x)Therefore,1+3(x2+23x)=1+3(x2+23x+1919)=1+3(x+13)213=23+3(x+13)2=3[(x+13)2+29]=3[(x+13)2+(23)2]I2=13dx[(x+13)2+(23)2]=13[123tan1(x+1323)]+C2[dxa2+x2=1atan1(xa)]=13[32tan1(3x+12)]+C2=12tan1(3x+12)+C2.....(iii)

On substituting the values of I1 and I2 from Eqs. (ii)and (iii)in Eq. (i), we get

I=56[log|1+2x+3x2|]113[12tan1(3x+12)]+C(56C1113C2=C)=56log|1+2x+3x2|1132tan1(3x+12)+C


flag
Suggest Corrections
thumbs-up
14
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon