Integrate the following functions.
∫5x−21+2x+3x2dx.
∫5x−21+2x+3x2dx
Let 5x−2=Addx(1+2x+3x2)+B
⇒5x−2=A(2+6x)+B⇒5x−2=6Ax+(2A+B)
On equating the coefficient of x and constant on both sides, we get
5=6A⇒A=56 and 2A+B=−2⇒B=−113∴5x−2=56(2+6x)+(−113)∴I=∫5x−21+2x+3x2dx=∫56(2+6x)−1131+2x+3x2dx
Let I1=∫2+6x1+2x+3x2dx and I_2 =∫11+2x+3x2dx
∴I=56I1−113I2
Now, I1=∫2+6x1+2x+3x2dx
Let 1+2x+3x2=t
⇒(2+6x)dx=dt∴I1=∫dtt=log|t|+C1⇒I1=log|1+2x+3x2|+C1.......(ii)
Also, I2=∫11+2x+3x2dx
1+2x+3x2can be written as 1+3(x2+23x)Therefore,1+3(x2+23x)=1+3(x2+23x+19−19)=1+3(x+13)2−13=23+3(x+13)2=3[(x+13)2+29]=3[(x+13)2+(√23)2]∴I2=13∫dx[(x+13)2+(√23)2]=13[1√23tan−1(x+13√23)]+C2[∵∫dxa2+x2=1atan−1(xa)]=13[3√2tan−1(3x+1√2)]+C2=1√2tan−1(3x+1√2)+C2.....(iii)
On substituting the values of I1 and I2 from Eqs. (ii)and (iii)in Eq. (i), we get
I=56[log|1+2x+3x2|]−113[1√2tan−1(3x+1√2)]+C(∵56C1−113C2=C)=56log|1+2x+3x2|−113√2tan−1(3x+1√2)+C