wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate the function 5x+3x2+4x+10

Open in App
Solution

Let 5x+3=Addx(x2+4x+10)+B
5x+3=A(2x+4)+B
Equating the coefficients of x and constant term, we obtain
2A=5A=52
& 4A+B=3B=7
5x+3=52(2x+4)7
5x+3x2+4x+10dx=52(2x+4)7x2+4x+10dx
=522x+4x2+4x+10dx71x2+4x+10dx
Let I1=2x+4x2+4x+10dx and I2=1x2+4x+10dx
5x+3x2+4x+10dx=52I17I2 .......... (1)
Then, I1=2x+4x2+4x+10dx
Let x2+4x+10=t
(2x+4)dx=dt
I1=dtt=2t=2x2+4x+10 ......(2)
I2=1x2+4x+10dx
=1(x2+4x+4)+6dx
=1(x+2)2+(6)2dx
=log|(x+2)x2+4x+10| .............(3)
Using equation (2) and (3) in (1), we obtain
5x+3x2+4x+10dx=52[2x2+4x+10]7log|(x+2)+x2+4x+10|+C
=5x2+4x+107log|(x+2)+x2+4x+10|+C

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon