Let 5x+3=Addx(x2+4x+10)+B
⇒5x+3=A(2x+4)+B
Equating the coefficients of x and constant term, we obtain
2A=5⇒A=52
& 4A+B=3⇒B=−7
∴5x+3=52(2x+4)−7
⇒∫5x+3√x2+4x+10dx=∫52(2x+4)−7√x2+4x+10dx
=52∫2x+4√x2+4x+10dx−7∫1√x2+4x+10dx
Let I1=∫2x+4√x2+4x+10dx and I2=∫1√x2+4x+10dx
∴∫5x+3√x2+4x+10dx=52I1−7I2 .......... (1)
Then, I1=∫2x+4√x2+4x+10dx
Let x2+4x+10=t
∴(2x+4)dx=dt
⇒I1=∫dtt=2√t=2√x2+4x+10 ......(2)
I2=∫1√x2+4x+10dx
=∫1√(x2+4x+4)+6dx
=∫1(x+2)2+(√6)2dx
=log|(x+2)√x2+4x+10| .............(3)
Using equation (2) and (3) in (1), we obtain
∫5x+3√x2+4x+10dx=52[2√x2+4x+10]−7log|(x+2)+√x2+4x+10|+C
=5√x2+4x+10−7log|(x+2)+√x2+4x+10|+C