Let I=∫xcos−1x√1−x2dx
I=−12∫−2x√1−x2⋅cos−1xdx
Taking cos−1x as first function and (−2x√1−x2) as second function and integrating by parts, we obtain I=−12[cos−1x∫−2x√1−x2dx−∫{(ddxcos−1x)∫−2x√1−x2dx}dx]
=−12[cos−1x⋅2√1−x2−∫−1√1−x2⋅2√1−x2dx]
=−12[2√1−x2cos−1x+∫2dx]
=−12[2√1−x2cos−1x+2x]+C
=−[√1−x2cos−1x+x]+C