√x2+1[log(x2+1)−2logx]x4=√x2+1x4[log(x2+1)−logx2]
=√x2+1x4[log(√x2+1x2)]
=√x2+1x4log(1+1x2)
=1x3√√x2+1x2log(1+1x2)
=1x3√1+1x2log(1+1x2)
Let 1+1x2=t⇒−2x3dx=dt
∴I=∫1x3√1+1x2log(1+1x2)dx
=−12∫√tlogtdt
=−12∫t12⋅logtdt
Integrating by parts, we obtain
I=−12[logt⋅∫t12dt−{(ddtlogt)∫t12dt}dt]
=−12⎡⎣logt⋅t3232−∫1t⋅t3232dt⎤⎦
=−12[23t32logt−23∫t12dt]
=−12[23t32logt−49t32]
=−13t32logt+29t32
=−13t32[logt−23]
=−13(1+1x2)32[log(1+1x2)−23]+C