We have,
∫xsin2xdx
Using formula,
∫u.vdx=u∫vdx−(∫dudx∫vdx)dx
Then,
∫xsin2xdx=∫x(1−cos2x)2dx
=∫x2dx−12∫x.cos2xdx
=x24−12[x∫cos2xdx−∫(dxdxcos2xdx)dx]
=x24−12[xsin2x2−sin2x2]+C
=x24−12[xsin2x2−12∫sin2xdx]+C
=x24−12[xsin2x2+14cos2x]+C
=x24−14xsin2x+18cos2x+C
Hence, this is the answer.