wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Inverse circular functions,Principal values of sin1x,cos1x,tan1x.
tan1x+tan1y=tan1x+y1xy, xy<1
π+tan1x+y1xy, xy>1.
(a) Prove that 2tan2{tanα2tan(π4β2)}=tan1[sinαcosβsinβ+cosα]
(b) Prove that
cos1(2+3cosx3+2cosx)=2tan1(15tanx2).

Open in App
Solution

(a) We know that 2tan1x=tan12x1x2
L.H.S.tan12tan(α/2)tan(π/4β/2)1tan2(α/2)tan2(π/4β/2)
Now change in terms of \sin e and \cos
2sin(α/2)cos(α/2)
=tan1sin(π/4β/2)cos(π/4β/2)cos2(α/2)cos2(π/4β/2)sin2(α/2)sin2(π/4β/2)
=tan1sinα.sin(π/2β)2[cos(α/2β/2+π/4)cos(α/2+β/2π/4)]
=tan1sinαcosβcosα+cos(π/2β)
=tan1sinαcosβcosα+sinβ
(b) Let θ=cos12+3cosx3+2cosx
cosθ1=2+3cosx3+2cosx [Apply Compo. & Divi.]
1+cosθ1+cosθ=1cosx5(1+cosx)
tan2θ2=15tan2x2
θ=2tan1[15tanx2]= R.H.S.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon