(a) We know that 2tan−1x=tan−12x1−x2
∴ L.H.S.tan−12tan(α/2)tan(π/4−β/2)1−tan2(α/2)tan2(π/4−β/2)
Now change in terms of \sin e and \cos
2sin(α/2)cos(α/2)
=tan−1sin(π/4−β/2)cos(π/4−β/2)cos2(α/2)cos2(π/4−β/2)−sin2(α/2)sin2(π/4−β/2)
=tan−1sinα.sin(π/2−β)2[cos(α/2−β/2+π/4)cos(α/2+β/2−π/4)]
=tan−1sinαcosβcosα+cos(π/2−β)
=tan−1sinαcosβcosα+sinβ
(b) Let θ=cos−12+3cosx3+2cosx
∴ cosθ1=2+3cosx3+2cosx [Apply Compo. & Divi.]
1+cosθ1+cosθ=1−cosx5(1+cosx)
∴ tan2θ2=15tan2x2
∴ θ=2tan−1[1√5tanx2]= R.H.S.