(a) sincos−1(3/5)=sinsin−1√1−9/25
=sinsin−1(4/5)=4/5.
[Here we have used the formula
cos−1x=sin−1√1−x2].
(b) We have tan−1x=cos−11√(1+x2).........(1)
∴ cos(tan−134)=cos(cos−11√(1+9/16))
=cos(cos−145)=45, by(1)
For the second part, we have
costan−1x=coscos−11√(1+x2)=1√(1+x2)
(c) Ans (d)
We know that cot−1t=sin−11√1+t2,t=x+1
and tan−1p=cos−11√1+p2,p=x
Hence from the given relation we get
1√1+(x+1)2=1√1+x2
or x2+2x+2=x2+1
or 2x=−1 ∴ x=−12⇒ (d)
(d) by §3,cot−1x=sin−11√(1+x2)
sin(cot−1x)=1√(1+x2).
(e) 2sin−1x=sin−12x√1−x2.
∴ sin(2sin−10.8)=2.810√(1−64100)=0.