wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Inverse circular functions,Principal values of sin1x,cos1x,tan1x.
tan1x+tan1y=tan1x+y1xy, xy<1
π+tan1x+y1xy, xy>1.
(a) sin(cos135)
(b) cos(tan134) and cos(tan1x)
(c) If sin(cot1(1+x))=cos(tan1x) then x is
(a) 1/2
(b) 1
(c) 0
(d) 1/2
(d) sin(cot1x)
(e) sin(2sin10.8)

Open in App
Solution

(a) sincos1(3/5)=sinsin119/25
=sinsin1(4/5)=4/5.
[Here we have used the formula
cos1x=sin11x2].
(b) We have tan1x=cos11(1+x2).........(1)
cos(tan134)=cos(cos11(1+9/16))
=cos(cos145)=45, by(1)
For the second part, we have
costan1x=coscos11(1+x2)=1(1+x2)
(c) Ans (d)
We know that cot1t=sin111+t2,t=x+1
and tan1p=cos111+p2,p=x
Hence from the given relation we get
11+(x+1)2=11+x2
or x2+2x+2=x2+1
or 2x=1 x=12 (d)
(d) by §3,cot1x=sin11(1+x2)
sin(cot1x)=1(1+x2).
(e) 2sin1x=sin12x1x2.
sin(2sin10.8)=2.810(164100)=0.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon