Question
Inverse circular functions,Principal values of sin−1x,cos−1x,tan−1x.
tan−1x+tan−1y=tan−1x+y1−xy, xy<1
π+tan−1x+y1−xy, xy>1.
(a) sin−1(3x/5)+sin−1(4x/5)=sin−1x
(b) cos−1x+sin−1(12x)=π6
(c) If a≤tan−1(1−x1+x)≤b where 0≤x≤1 then (a,b)=
(a) (0,π)
(b) (0,π/4)
(c) (−π/4,π/4)
(d) (π/4,π/2)
(d) If a≤(sin−1x)3+(cos−1x)3≤b then (a,b) is equal to (π332,7π38).