Inverse circular functions,Principal values of sin−1x,cos−1x,tan−1x.
tan−1x+tan−1y=tan−1x+y1−xy, xy<1
π+tan−1x+y1−xy, xy>1.
(a) If tan−1(x+2x)−tan−14x−tan−1(x−2x)=0
then x=.......... or x=........(xϵR)
(b) If sin−1x+sin−1 y=2π/3
cos−1x−cos−1 y=π/3
then x=........, y=.......
(c) It tan−1y=4tan−1x,(|x|<tanπ8), then
express y as an algebraic function of x, Also deduce that tan(π/8) is a root of x4−6x2+1=0.