Let the sides be a−d,a,a+d
It is understood that a>d>0 and from the figure ∠C is greatest and ∠A is smallest.
By given condition C=2A
And hence B=π(A+C)=π−3A
Hence by sine rule we have
a+dsinC=a−dsinA=asinB
or a+dsin2A=a−dsinA=asin(π−3A)
∴2cosA=a+da−d and aa−d=sin3AsinA
∴aa−d=3−4sin2A=3−4+(2cosA)2
∴aa−d=1+(a+da−d)2=4ad(a−d)2
a≠0 ∴a−d=4d or a=5d
∴ sides are a−d,aa,a+d
or 4d,5d,6d
Hence the required ratio 4:5:6.