Inverse circular functions,Principal values of sin−1x,cos−1x,tan−1x. tan−1x+tan−1y=tan−1x+y1−xy, xy<1 π+tan−1x+y1−xy, xy>1. If 0<x<1, then √1+x2[{xcos(cot−1x)+sin(cot−1x)}2−1]1/2 is equal to (a) x√1+x2 (b) x (c) x√1+x2 (d) √1+x2
Open in App
Solution
(c) Let cot−1x=θ∴cotθ=x ⇒cosecθ=√1+x2 or sinθ=1√1+x2 and cosθ=x√1+x2 ∴f(x)=√1+x2[{xcosθ+sinθ}2−1]1/2 √1+x2[{x.x√1+x2+1√1+x2}2−1]−1/2 √1+x2[1+x2−1]1/2=x√1+x2⇒ (c)