The correct option is A True
Simplifying, we get
=tanA+secA−1tanA−secA+1
=sinA+1−cosAsinA−1+cosA
=sinA+(1−cosA)sin−(1−cosA)
=(sinA+1−cosA)2sin2A−(1−cosA)2
=sin2A+cos2+1−2sinAcosA−2cosA+2sinA(1−cos2A)−(1−cosA)2
=2−2sinAcosA−2cosA+2sinA(1−cosA)(1+cosA−1+cosA)
=2(1−cosA)+2sinA(1−cosA)(1−cosA)(2cosA)
=secA+tanA
=1+sinAcosA
=√(1+sinA)21−sin2A
=√1+sinA1−sinA