We have f(x)=log{x2+ab(a+b)x}.
f(a)=log{a2+ab(a+b)a}=log(1)=0 and f(b)=log{b2+ab(a+b)b}
=log(1)=0∴f(a)=f(b)=0
Also Rf′(x)=limh→0f(x+h)−f(x)h
=limh→01h[log{(x+h)2+ab(a+b)(x+h)}−log{x3+ab(a+b)x}]
=limh→01h[log(x2+2xh+h2+ab)(a+b)x(a+b)(x+h)(x2+ab)]
=limh→01h[log{(x2+2h+h2+ab)(x2+ab)×xx+h}]
=limh→01h[log{1+2hx+h2x2+ab−log{1+hx}}]
=limh→01h[2hxx2+ab−hx+⋅⋅⋅]
[∵log(1+x)=x−x22+x33⋅⋅⋅] =[2x(x2+ab)]−(1x).
Also Lf′(x)=limh→0{f(x−h)−f(x)−h}=limh→01(−h){−2hxx2+ab−(−h)x+...}
∴Lf′(x)=Rf′(x)
Thus ∴Lf′(x)=Rf′(x).
∴f′(x) exists for all values of x in (a, b).
Also f(x) is continuous for all values of x in (a, b) since f(x) is differentiable for all values of x in (a, b).
Hence, all the three conditions of Rolle's theorem are satisfied.
[2x(x2+ab)]−(1x)=0
or 2x2−(x2+ab)=0 or x2=ab
or ∴f(x)=0 for at least one value of x where a< x< b. Equating f'(x) to zero, we have x=√ab
which clearly lies in (a, b) as √ab is the G.M. of a and b.