Let first term =a and common difference = d
∴A=(102)[2a+(10−1)d]=5(2a+9d)nowB=(102)[2a6+(10−1)d]=5[2{a+5d}+9d]=5[2a+19d]nowB−A=200or5×10d=200∴d=(20050)=4andA+B=8605(2a+9d)+5(2a+19d)=860or20a+140d=860∴a=15thena15=a+14d=15+56=71
If a1,a2,⋅⋅⋅,a15 are in A.P. and a1+a8+a15=15, then a2+a3+a8+a13+a14 equals
If a1,a2,a3..... are in A.P. such that a1+a5+a10+a15+a20+a24=225.