wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let a=31/203+1 and f(n)= nC0an1 nC1an2+ nC2an3+(1)n1 nCn1a0 where n3. If f(2030)+f(2031)=3x(ya1), then the value of xy is

A
6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
5
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
4.5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 5
f(n)= nC0an1 nC1an2 + nC2an3+(1)n1 nCn1a0af(n)= nC0an nC1an1+ nC2an2 +(1)n1 nCn1a +(1)n nCna0(1)n nCna0af(n)=(1a)n(1)naf(2030)=(1a)20301af(2031)=(1a)2031+1a(f(2030)+f(2031))=(1a)2030+(1a)2031

We know that,
a=31/203+11a=(31/203)
a(f(2030)+f(2031))=(1a)2030(1+(1a))a(f(2030)+f(2031))=310(2a)f(2030)+f(2031)=310×(2a)af(2030)+f(2031)=310×(2a1)3x(ya1)=310×(2a1)x=10,y=2xy=5

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Monotonicity
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon