Let a=31/203+1 and f(n)=nC0an−1−nC1an−2+nC2an−3−⋯+(−1)n−1nCn−1a0 where n≥3. If f(2030)+f(2031)=3x(ya−1), then the value of xy is
A
6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
5
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
4.5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B5 f(n)=nC0an−1−nC1an−2+nC2an−3−⋯+(−1)n−1nCn−1a0⇒af(n)=nC0an−nC1an−1+nC2an−2−⋯+(−1)n−1nCn−1a+(−1)nnCna0−(−1)nnCna0⇒af(n)=(1−a)n−(−1)n⇒af(2030)=(1−a)2030−1⇒af(2031)=(1−a)2031+1⇒a(f(2030)+f(2031))=(1−a)2030+(1−a)2031
We know that, a=31/203+1⇒1−a=−(31/203) a(f(2030)+f(2031))=(1−a)2030(1+(1−a))⇒a(f(2030)+f(2031))=310(2−a)⇒f(2030)+f(2031)=310×(2−a)a⇒f(2030)+f(2031)=310×(2a−1)⇒3x(ya−1)=310×(2a−1)⇒x=10,y=2⇒xy=5