wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let A and B denote the statements A:cosα+cosβ+cosγ=0, B:sinα+sinβ+sinγ=0

If cos(βγ)+cos(γα)+cos(αβ)=32, then

A
A is false and B is true
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
both A and B are true
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
both A and B are false
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
A istrue and B is false
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C both A and B are true
cos(βγ)+cos(αβ)+cos(γα)=32

cosβcosγ+sinβsinγ+cosαcosβ+sinαsinβ+cosγcosα+sinγsinα=32

(2cosβcosγ+2cosαcosβ+2cosγcosα)+(2sinβsinγ+2sinαsinβ+2sinγsinα)=3

3+(2cosβcosγ+2cosαcosβ+2cosγcosα)+(2sinβsinγ+2sinαsinβ+2sinγsinα)=3+3

sin2α+cos2α+sin2β+cos2β+sin2γ+cos2γ+(2cosβcosγ+2cosαcosβ+2cosγcosα)+(2sinβsinγ+2sinαsinβ+2sinγsinα)=0

(cos2α+cos2β+cos2γ+2cosβcosγ+2cosαcosβ+2cosγcosα)+(sin2α+sin2β+sin2γ+2sinβsinγ+2sinαsinβ+2sinγsinα)=0(cosα+cosβ+cosγ)2+(sinα+sinβ+sinγ)2=0

This is only true when,
cosα+cosβ+cosγ=0
and sinα+sinβ+sinγ=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
De Moivre's Theorem
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon