Let a+b+c=10, a,b,c>0. Then the maximum value of a2b3c5 is
a+b+c=0
dividing ab & c respect to a2b3c5
=a2+a2+b3+b3+b3+c5+c5+c5+c5+c5=10
We know
AM≥GM
So
[a2+a2+b3+b3+c5+...5times]10≥[a2.a2.b3....c5]1101010≥[a2b3c5223355]1101≥a2b3c5223355223355≥a2b3c5(15)3102≥a2b3c5
So maximum value =(15)3×100
AnswerA