i) If a, b, c are in GP, then they can be taken as a,ar,ar2 where r,(r≠0) is the common ratio.
ii) Arithmetic mean of x1,x2,……xn=x1+x2+……+xnn
Let a, b, c be a,ar,ar2 where rϵN
Also, a+b+c3=b+2
⇒a+ar+ar2=3(ar)+6
⇒ar2−2ar+a=6
⇒(r−1)2=6a
Since, 6a must be perfect square and aϵN
So, a can be 6 only
⇒r−1=±1⇒r=2
and a2+a−14a+1=36+6−147=4