Let
Δ=∣∣
∣
∣∣−bcb2+bcc2+bca2+ac−acc2+aca2+abb2+ab−ab∣∣
∣
∣∣
Multiplying R1,R2,R3 by a,b,c respectively,
and then taking a,b,c common from C1,C2, and C3, we get
Δ=∣∣
∣∣−bcab+acac+abab+bc−acbc+abac+bcbc+ac−ab∣∣
∣∣
Now, using R1→R1+R2+R3
Δ=∣∣
∣∣ab+ac+bcab+ac+bcab+ac+bcab+bc−acbc+abac+bcbc+ac−ab∣∣
∣∣
Δ=(ab+bc+ca)∣∣
∣∣111ab+bc−acbc+abac+bcbc+ac−ab∣∣
∣∣
Now, applying C2→C1−C2, and C3→C1−C3, we get
Δ=(ab+bc+ca)∣∣
∣∣100ab+bcab+bc+ca0ac+bc0ab+bc+ca∣∣
∣∣
Δ=(ab+bc+ca)3
⇒27=(ab+bc+ca)3⇒ab+bc+ca=3
and a2+b2+c2=3,
∴(a+b+c)2=a2+b2+c2+2(ab+bc+ca)
⇒a+b+c=±3
⇒a+b+c=3 (∵a+b+c≥0)
So,
a+b+c=−qp=3
⇒3p+q=0