The correct option is B
1
Given A, B, C are angles of a triangle.
⇒A+B+C=π.⇒C=π−(A+B)
Now,
cosA.cosBcosC=cosA.cosBcos(π−(A+B))⇒cosA.cosBcosC=−cosA.cosBcos(A+B)
Now, we know the expression
cos(A+B)=cosAcosB −sinAsinB
So, we get our expression as
−cosA.cosBcos(A+B)=−cosA.cosBcosAcosB−sinAsinB
Now, dividing both numerator and denominator by numerator, we get
−cosA.cosBcosAcosB−sinAsinB=−11−tanAtanB⇒−cosA.cosBcosAcosB−sinAsinB=−11−2=1
Thus, Option b. is correct.