wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let a, b, c, d, ϵR+ and 256 abcd (a+b+c+d)4 and 3a+b+2c+5d=11 then a3+b+C2+5d is equal to :-

Open in App
Solution

Given 256 abcd (a+b+c+d)4
3a+b+2c+5d=11 …………(1)
We know that
(Arithmetic mean) (Geometric mean)
From equation (1)
(a+a+a+b+c+c+d+d+d+d+d11)(a3bc2d5)1/4
(3a+b+2c+5d11)(a3bc2d5)1/4
1a3bc2d5 …………(2)
Now
For terms, a3,b,c2,d5
a3+b+c2+d54(a3bc2d5)1/4
(a3+b+c2+d54)a3bc2d5
From equation (2)
(a3+b+c2+d54)4=1
a3+b+c2+d5=256
Hence value of a3+b+c2+d5 is 256.

1182986_1357002_ans_44b7d166722b449f9762cefdeddc918a.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Harmonic Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon