Let a=¯i+¯j−¯k,¯b=¯5i−¯3j−¯3k,¯c=¯3i−j−¯2k. If collinear with ¯c and |¯r|=|¯a+¯b|. Then ¯r equals :
We have,
→a=→i+→j−→k
→b=5→i−3→j−3→k
→c=3→i−→j−2→k
Given that,
It ius collinear with →c.
Then,
∣∣→r∣∣=∣∣∣→a+→b∣∣∣
=∣∣∣→i+→j−→k+5→i−3→j−3→k∣∣∣
=∣∣∣6→i−2→j−4→k∣∣∣
=2∣∣∣3→i−→j−2→k∣∣∣
=±2→c
Hence, this is the
answer.