wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let A be the sum of the first 20 terms and B be the sum of the first 40 terms of the series.12+2.22+32+2.42+52+2.62+...If B-2A=100λ, then λ is equal to :


A

464

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

496

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

232

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

248

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D

248


Determine the value of λ

A be the sum of the first 20 terms

A=12+2.22+32+2.42+52+2.62+...+2.202=12+32+...+192+2.22+2.42+...+2.202seperateoddandeventerm=12+32+...+192+2.22+42+...+202=12+32+...+192+22+42+...+202+22+42+...+202=12+22+32+...+202+22.1+22.22+...+22.102=12+22+32+...+202+2212+22+32+...+102=20×21×416+410×11×21612+22+32+...+n2=n(n+1)(2n+1)6=172206+4×23106=4410

B is the sum of first 40 terms.

B=12+2.22+32+2.42+52+2.62+...+2.402=12+32+...+392+2.22+2.42+...+2.402seperateoddandeventerm=12+32+...+392+2.22+42+...+402=12+32+...+392+22+42+...+402+22+42+...+402=12+22+32+...+402+22.1+22.22+...+22.202=12+22+32+...+402+2212+22+32+...+202=40×41×816+420×21×41612+22+32+...+n2=n(n+1)(2n+1)6=1328406+4×172206=33620

We know that, B-2A=100λ

therefore, substituting the values we have,

33620-2(4410)=100λ24800=100λλ=248

Hence, option (D) is the correct answer


flag
Suggest Corrections
thumbs-up
17
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Mathematical Induction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon