Let ′a′ be the variance of the first 25 natural numbers. If a focal chord of y2=4ax makes an angle α∈(0,π4] with the positive direction of x axis, then the minimum length of the focal chord is
Open in App
Solution
variance σ2=∑(xi)2n−(∑xin)2 For first n natural numbers ∑x2i=n(n+1)(2n+1)6 ∑xi=n(n+1)2 σ2=(n+1)(2n+1)6−(n+1)24 =(n+1)12[4n+2−3n−3] =(n2−1)12 a=(25)2−112=52 (∵n=25)
Length of the focal chord =4acosec2α ⇒4×52cosec2α ⇒208cosec2α Now 0<α≤π4 ⇒√2≤cosecα<∞ ⇒2≤cosec2α<∞ Minimum Length =208×2=416