Let A=⎡⎢⎣1−21−231115⎤⎥⎦
(A−1)−1=A
|A−1|=−1413(−4169−9169)+1113(−11169−15169)+513(−33169+20169)=−1413(−13169)+1113(−26169)+513(−13169)=14169−22169−5169=−13169=−113
and adj(A−1)=113⎡⎢⎣−12−12−3−1−1−1−5⎤⎥⎦
∴ (A−1)=1|A−1|(adj A−1)=1−113×113⎡⎢⎣−12−12−3−1−1−1−5⎤⎥⎦=⎡⎢⎣1−21−231115⎤⎥⎦=A