Let {an} be a non - constant arithmetic progression with a1=1 and for any n≥1, the value a2n+a2n−1+⋯+an+1an+an−1+⋯a1 remains constant.
Then, a15 will be?
29
C=a2n+a2n−1+a2n−2+⋯+an+1an+an−1+⋯+a1
Adding 1 on both sides, we get
C+1=a2n+a2n−1+a2n−2+⋯+an+1an+an−1+⋯+a1+1
=a2n+a2n−1+⋯+an+1+an+⋯+a1an+an−1+⋯+a1∴ C+1=S2nSn=2n2[2a1+(2n−1)d]n2[2a1+(n−1)d]=2[2a1+(2n−1)d]2a1+(n−1)d
Since, C+12 is a constant.
Let C+12=R
⇒ 2+(2n−1)d2+(n−1)d=R [∵ a1=1]⇒ 2+(2n−1)d=2R+(n−1)dR⇒ 2R+ndR−dR=2+2nd−d⇒ nd(R−2)=dR−2R−d+2⇒ nd(R−2)=(d−2)(R−1)
Now, left side has n which changes and right side remains constant
∴ LHS = RHS = 0
⇒ R=2 [∵ n≠0, d≠0]⇒ 0=d−2⇒ d=2∴ a15=a1+(15−1)d=1+14×2=29