ar=r250Cr50Cr−1=r2(50−r+1r)
As we know nCrnCr−1=n−r+1rar=r(51−r)=51r−r2
b is the coefficient of x49 in (x−a1)(x−a2)(x−a3)........(x−a49)(x−a50)
∴b=−(a1+a2+a3+..............a49+a50)
∴b=−∑50r=1ar=−∑50r=151r−r2=−[(51×50×512)−(50×51×1016)]
Note : We know that ∑n=n(n+1)2,∑n2=n(n+1)(2n+1)6
∴b=−(65025−42925)⇒b=−22100−b17=2210017=1300
Hence, the answer is 1300.