Let a relation R be defined by R = {(4,6); (1,4); (4,6); (7,6); (3,7)} then R−1 oR is
{(1, 1), (4, 4), (4, 7), (7, 4), (7, 7), (3, 3)}
We first find R−1 , we
have R−1 = { (5,4);(4,1);(6,4);(6,7);(7,3)}. We now obtain the elements
of R−1 oR we first pick the element of R and then of R^{-1}.Since (4,5) ∈ R and (5,4) ∈ R−1 , we have (4,4) ∈ R−1oR
Similarly , (1,4) ∈ R , (4,1) ∈ R−1⇒(1,1)∈R−1oR
(4,6) ∈R(6,4)∈R−1⇒(4,4)∈R−1oR,
(4,6) ∈R(6,7)∈R−1⇒(4,7)∈R−1oR,
(7,6) ∈R(6,4)∈R−1⇒(7,4)∈R−1oR,
(7,6) ∈R(6,7)∈R−1⇒(7,7)∈R−1oR,
(3,7) ∈R(7,3)∈R−1⇒(3,3)∈R−1oR,
Hence , R−1oR = { (1,1); (4,4); (4,7); (7,4), (7,7); (3,3)},