Let tanα and tanβ be two real roots of the equation (k+1)tan2x−2λtanx=(1−k), where (k≠1)and λ are real numbers. If tan2(α+β)=50, then a value of λ is:
52
102
10
5
Finding the value of λ:
The given equation is (k+1)tan2x−2λtanx+(k−1)=0, and tanα and tanβ are two real roots then
tanα+tanβ=--2λk+1=2λk+1......(i)tanα.tanβ=k−1k+1....(ii)
∵tanα+β=tanα+tanβ1-tanαtanβ=2λk+11-k−1k+1[from(i)&(ii)]=2λk+1-k-1=2λ2⇒tanα+β=λ2⇒tan2α+β=λ22[squaringbothsides]⇒50=λ22∵tan2α+β=50isgiven⇒λ2=100⇒λ=±10
Hence C is the correct .