Question 15 Let ¯xbe the mean of x1,x2,……xn, and ¯ybe the mean of y1,y2,……yn. If ¯z represents the mean of x1,x2,……xn,y1,y2,……yn, then ¯z is equal to:
A) ¯x+¯y B) ¯x+¯y2 C) ¯x+¯yn D) ¯x+¯y2n
Open in App
Solution
The answer is B. Given, ∑ni=1xi=n¯xand∑ni=1=n¯y……(i)[∵¯x=∑ni=1xin] Now, ¯z=(x1+x2+……xn)+(y1+y2+……+yn)n+n =∑ni=1xi+∑ni=1yi2n =n¯x+n¯y2n=¯x+¯y2 [from (i)]