wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Let

Δ1=∣ ∣ ∣1cosαcosβcosα1cosγcosβcosγ1∣ ∣ ∣

and Δ2=∣ ∣ ∣0cosαcosβcosα0cosγcosβcosγ0∣ ∣ ∣ .

If Δ1=Δ2, find sin2α+sin2β+sin2γ

Open in App
Solution

GivenΔ1=∣ ∣ ∣1cosαcosβcosα1cosγcosβcosγ1∣ ∣ ∣

expandingthedeterminantgives

Δ1=sin2γcos2αcos2β+2cosαcosβcosγ

Δ2=∣ ∣ ∣0cosαcosβcosα0cosγcosβcosγ0∣ ∣ ∣

Δ2=2cosαcosβcosγ

butΔ1=Δ2

sin2γcos2αcos2β=0

sin2α+sin2β+sin2γ=2 [cos2α=1sin2α]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Adjoint and Inverse of a Matrix
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon