The correct option is
C Δ1=Δ2Δ1=∣∣
∣
∣∣b2+c2abacabc2+a2bcacbca2+b2∣∣
∣
∣∣
Multiplying C1,C2 and C3 by a,b and c respectively , we get
Δ1=1abc∣∣
∣
∣∣a(b2+c2)ab2ac2a2bb(c2+a2)bc2a2cb2cc(a2+b2)∣∣
∣
∣∣
Taking a,b and c common from R1,R2 and R3, respectively, we get
Δ1=abcabc∣∣
∣
∣∣(b2+c2)b2c2a2(c2+a2)c2a2b2(a2+b2)∣∣
∣
∣∣
Applying C1→C1−C2−C3
Δ1=∣∣
∣
∣∣0b2c2−2c2(c2+a2)c2−2b2b2(a2+b2)∣∣
∣
∣∣
Again applying C2→C2−C1,C3→C3−C1, we get
Δ1=−2∣∣
∣
∣∣0b2c2c2a20b20a2∣∣
∣
∣∣=4a2b2c2
And for Δ2=∣∣
∣
∣∣−a2abacab−b2bcacbc−c2∣∣
∣
∣∣
Taking a,b and c common from C1,C2 and C3
Δ2=abc∣∣
∣∣−aaab−bbcc−c∣∣
∣∣
Taking a,b and c common from R1,R2 and R3, we get
Δ2=a2b2c2∣∣
∣∣−1111−1111−1∣∣
∣∣=4a2b2c2
Hence Δ1=Δ2