The correct option is B \N
Given, Δa=∣∣
∣
∣∣a−1n6(a−1)22n24n−2(a−1)33n33n2−3n∣∣
∣
∣∣
∴ ∑na=1 Δa=∣∣
∣
∣∣∑na=1(a−1)n6∑na=1(a−1)22n24n−2∑na=1(a−1)33n33n2−3n∣∣
∣
∣∣
∣∣
∣
∣
∣
∣∣n(n−1)2n6n(n−1)(2n−1)62n24n−2n2(n−1)243n33n2−3n∣∣
∣
∣
∣
∣∣=n2(n−1)2∣∣
∣
∣
∣∣116(2n−1)32n4n−2n(n−1)23n23n2−3n∣∣
∣
∣
∣∣=n3(n−1)12∣∣
∣∣1162n−16n12n−6n−16n6n−6∣∣
∣∣
Applying C3→C3−6C1
=n3(n−1)12∣∣
∣∣1102n−16n0n−16n0∣∣
∣∣=0