wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let
f(x)=∣ ∣ ∣1+sin2xcos2x4sin2xsin2x1+cos2x4sin2xsin2xcos2x1+4sin2x∣ ∣ ∣
find the maximum value of f(x)

Open in App
Solution

f(x)=∣ ∣ ∣1+sin2xcos2x4sin2xsin2x1+cos2x4sin2xsin2xcos2x1+4sin2x∣ ∣ ∣

applyingC1C1+C2weget

f(x)=∣ ∣ ∣2cos2x4sin2x21+cos2x4sin2x1cos2x1+4sin2x∣ ∣ ∣

applyingR2R2R1andR3R3R1

f(x)=∣ ∣ ∣2cos2x4sin2x221+cos2cos2x4sin2x4sin2x12cos2xcos2x1+4sin2x4sin2x∣ ∣ ∣

f(x)=∣ ∣2cos2x4sin2x010101∣ ∣=2+4sin2x

Sincethemaximumvalueofsin2xis1

themaximumvalueoff(x)is6

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transpose of a Matrix
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon