wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let F(x)=f(x)g(x)h(x).
At some point x0 it is given that F(x0)=21F(x0), f(x0)=4f(x0),g(x0)=7g(x0) and h(x0)=kh(x0).Then k is

Open in App
Solution

Given, F(x)=f(x).g(x).h(x)
On differentiating at x=x0, we get
F(x0)=f(x0).g(x0)h(x0)+f(x0).g(x0)h(x0)
+f(x0)g(x0)h(x0) ....... (i)
where F(x0)=21F(x0),f(x0)=4f(x0)
g(x0)=7g(x0) and h(x0)=kh(x0),
On substituting in Eq. (i), we get
21F(x0)=4f(x0)g(x0)h(x0)7f(x0)g(x0)h(x0)+kf(x0)g(x0)h(x0)
21=47+k [using F(x0)=f(x0)g(x0)h(x0)]
k=24

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon