At some point x0 it is given that F′(x0)=21F(x0),f′(x0)=4f(x0),g′(x0)=−7g(x0) and h′(x0)=kh(x0).Then k is
Open in App
Solution
Given, F(x)=f(x).g(x).h(x) On differentiating at x=x0, we get F′(x0)=f′(x0).g(x0)h(x0)+f(x0).g′(x0)h(x0) +f(x0)g(x0)h′(x0) ....... (i) where F′(x0)=21F(x0),f′(x0)=4f(x0) g′(x0)=−7g(x0) and h′(x0)=kh(x0), On substituting in Eq. (i), we get 21F(x0)=4f(x0)g(x0)h(x0)−7f(x0)g(x0)h(x0)+kf(x0)g(x0)h(x0) ⇒21=4−7+k [using F(x0)=f(x0)g(x0)h(x0)] ∴k=24