Let t=2√2−(1+√3)√3−1 and f(x)=2x1−x2, g(x)=3x−x31−3x2, then ddt{f(g(t))}=
We know that,
tan2x=2tanx1−tan2x & tan3x=3tanx−tan3x1−3tan2x
So, we clearly have
f(tanx)=tan2x&g(tanx)=tan3x
let us simplify the value of t
t=2√2−(1+√3)√3−1
rationalizing the denominator,
t=(2√2−(1+√3))(√3+1)(√3−1)(√3+1)
after simplification,
t=√2−√3−√4+√6
⟹t=tan7.5 (here 7.5 is in degrees)
Now, to find ddt{f(g(t))} let us assume
t=tanx (where x=7.5)
differentiating on both sides, we have
⟹dt=sec2xdx
⟹dxdt=cos2x
So,
⟹ddt{f(g(t))}=ddt{f(g(tanx))}=ddt{f(tan3x)}=ddt{tan6x}
=(sec26x)(6)(dxdt)=(sec26x)(6)(cos2x)
put x=7.5,
we get,
=(12)cos27.5
The value becomes
(12+3√6+3√22).