wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let p(x)=∣ ∣ ∣33x3x2+23x3x2+23x3+6x3x2+23x3+6x3x4+12x2+2∣ ∣ ∣
q(x)=∣ ∣ ∣2222+x3+x4+x(2+x)2(3+x)2(4+x)2∣ ∣ ∣
r(x)=∣ ∣ ∣cos(x+π/4)sin(x+π/4)1cos(x+π/2)sin(x+π/2)2cos(x+3π/4)sin(x+3π/4)1∣ ∣ ∣
s(x)=∣ ∣ ∣12x2x+14x2x(2x1)2x(2x+1)6x(2x1)4x(2x1)(x1)2x(4x21)∣ ∣ ∣
Match the expressions on the left with their properties or values on the right.

Open in App
Solution

A) p(x)=∣ ∣ ∣33x3x2+23x3x2+23x3+6x3x2+23x3+6x3x4+12x2+2∣ ∣ ∣
Applying C3C3xC2,C2C2xC1, we get
p(x)=∣ ∣3023x24x3x2+24x6x2+2∣ ∣
Now applying R3R3xR2,R2R2xR1
p(x)=∣ ∣302022x22x2x2+2∣ ∣=3(4x2+44x2)+2(4)=4
B) q(x)=∣ ∣ ∣2222+x3+x4+x(2+x)2(3+x)2(4+x)2∣ ∣ ∣
Applying C3C3C2,C2C2C1, we get
q(x)=∣ ∣ ∣2002+x11(2+x)22x+52x+7∣ ∣ ∣=2(2x+72x5)=4
C) r(x)=∣ ∣ ∣cos(x+π/4)sin(x+π/4)1cos(x+π/2)sin(x+π/2)2cos(x+3π/4)sin(x+3π/4)1∣ ∣ ∣
Differentiating w.r.t, we get
r(x)=∣ ∣ ∣sin(x+π/4)sin(x+π/4)1sin(x+π/2)sin(x+π/2)2sin(x+3π/4)sin(x+3π/4)1∣ ∣ ∣+∣ ∣ ∣cos(x+π/4)cos(x+π/4)1cos(x+π/2)cos(x+π/2)2cos(x+3π/4)cos(x+3π/4)1∣ ∣ ∣+∣ ∣ ∣cos(x+π/4)sin(x+π/4)0cos(x+π/2)sin(x+π/2)0cos(x+3π/4)sin(x+3π/4)0∣ ∣ ∣=0+0+0=0
r(x) is constant
D) s(x)=∣ ∣ ∣12x2x+14x2x(2x1)2x(2x+1)6x(2x1)4x(2x1)(x1)2x(4x21)∣ ∣ ∣=2x(2x)(2x1)∣ ∣ ∣12x2x+12(2x1)2x+132(x1)(2x+1)∣ ∣ ∣=4x2(2x+1)(2x1)∣ ∣ ∣12x12(2x1)132(x1)1∣ ∣ ∣
Applying C2C2+C1, we get
s(x)=4x2(4x21)∣ ∣12x+1122x+1132x+11∣ ∣=4x2(4x21)(2x+1)∣ ∣111211311∣ ∣=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiation under Integral Sign
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon