Let f be a function such that f(3)=1 and f(3x)=x+f(3x−3) for all x. Then find the value of f(300).
f(3)=1
f(3x)=x+f(3x−3)
Substitute x=1
f(3)=1+f(0)
f(0)=0
put x=2
f(6)=2+f(3)=3
put x=3
f(9)=3+f(6)=3+3=6
put x=4
f(12)=4+6=10
Hence f(300)=1+3+6+10+.100th term
S=1+3+6+10....+Tn
S=1+(1+2)+(1+2+3)+10.......+Tn
Tr=1+2+3+4.....r terms=r(r+1)2
s=∑tr=∑r2+r2
=12(n(n+1)(2n+1)6+n(n+1)2)n=100
∴f(300)=12(100.101.2016+100.1012)=1,71,700