Given f(x+y2)=f(x)+f(y)2, for any real x,y
Also, given y is independent of x. ie, dydx=0
On differentiating w.r.t. x, we get
f′(x+y2)⋅12(1+dydx)=12{f′(x)+f′(y)⋅dydx}
∴12f′(x+y2)=12f′(x) (as dydx=0)
⇒f′(x+y2)=f′(x) ....(i)
Substitute x=0 and y=x in equation (i), we get
f′(0+x2)=f′(0)
⇒f′(x2)=a (given)
which shows f(x2)=a(x2)+c
∴f(x)=ax+c
Substitute x=0
f(0)=5=c (∵f(0)=b)
∴f(x)=ax+b
On differentiating f′(x)=3 and f′′(x)=0